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LETTER TO THE EDITOR 

Wave propagation in a random stratified medium 

Marko Robnik 
Institut fur Astrophysik, Universitat Bonn, Auf dem Hiigel71,5300 Bonn, West Germany 

Received 14 November 1979 

Abstract. The transmission coefficient for (electromagnetic) waves propagating in a sto- 
chastically stratified medium with small fluctuations of the refractive index is calculated. 
This coefficient is expressed in terms of the power spectrum of the refractive index. It 
decreases exponentially with the square root of the layer thickness. As an example the 
Gaussian correlation function for the refractive index is considered, in which case the 
transmitted intensity is minimal if the mean wavelength is comparable to the correlation 
length. 

Transmission and/or reflection of (electromagnetic) waves in an inhomogeneous 
medium depend crucially upon the ratio between the (mean) wavelength and the scale 
length of the inhomogeneities. Waves with short wavelength see a smoothly varying 
medium, while long waves essentially do not feel the inhomogeneities. Hence, the 
propagation of waves will be appreciably influenced by the inhomogeneities of the 
medium if the ratio of the two quantities is of order unity. In a randomly stratified 
medium the scale length of the inhomogeneities is given by the correlation length of the 
refractive index. In the following we shall study the transmission of a monochromatic 
wave with normal incidence, i.e. we discuss basically the one-dimensional wave 
propagation in a non-absorbing stochastic medium, whose statistics are assumed to be 
known. 

Since the wavenumber k = w n / c  is proportional to the refractive index n, the 
statistics of k ( x )  are the same as the statistics of n ( x ) .  We shall consider small 
fluctuations only, so that 

k ( x )  = kO(l+Ef(X)), ( 1 )  

where f ( x )  is a given stationary stochastic process with vanishing mean, i.e. ( f ( x ) )  = 0, 
and with its mean variance equal to unity, i.e. ( f 2 ( x ) )  = 1, while ko and E are constants. 

In principle we have to solve the stochastic wave equation 

U”+ k2(x)u = 0,  (2) 

or we must derive an equation for the moments instead (Uscinski 1977). A third 
possibility is offered if the evolution operator for the field U ( x )  is known in its explicit 
dependence upon the function k(x ) .  In this case the statistics of U ( X )  can be more easily 
derived from the statistics of k by appropriate averaging of the evolution operator. 

No such exact result is known, but we may use an analytic approximation (see 
Robnik (1979)). In that paper, the variation of the wave amplitudes was described by a 
transmission matrix whose parameters are expressed explicitly in terms of the function 
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k ( x ) .  Here we are going to calculate the transmission coefficient 

Id[’= l/cosh’ T (3) 
and the reflection coefficient lr1’ = 1 - /d1’ = tanh’ T, so that only the parameter T is 
required, 

T = 1 loL exp( 2i 1; k dy) dxl. 

To first order in E, with k from equation (l), 

7 = [oLf’(x)  exp(2ikox) dx, 

(4) 

where f ’ ( x )  := df/dx. Now for a sufficiently large layer thickness L, the integral above 
approaches the Fourier transform of the stationary process df/dx. If L is larger than the 
correlation length we may therefore approximate T’ by 

T* (e2/4)LSr(2ko), 

where Sr(2k0) is the power spectrum of the process df/dx (cf Papoulis 1965), and is 
simply related to the power spectrum of the given process f, namely by Sr(2k0)= 
4kiSf(2ko). We thereby obtain the final result 

7 = eko(LSf(2ko)y, (6) 
which determines the transmission coefficient (3).  At large L the intensity of the 
transmitted waves decays as Id)’ = 4 e~p[-2(L/s)’ /~] ,  with the decay length 

s = 1/(EZkiS,(2k,)). (7) 
The reason for a non-exponential decreasing of the transmitted intensity is the 

multiple scattering, i.e. multiple inner reflections. If we neglect them (i.e. if only single 
scatterings are admitted), we may calculate the transmission coefficient by multiplying 
the coefficients for infinitesimal layers, which would yield an exponential law in 
agreement with the result of Uscinski (1977). 

As an example we assume a Gaussian correlation function for the medium fluctua- 
tions, 

~ ( z )  := ( f ( x ) f ( x  + z ) )  = exp(-z’/a’), 

where a is tLe correlation length. Then the power spectrum of the process f equals 
Sf(2ko) = a d i , e ~ p [ - k ~ a ) ~ ] ,  and the transmission coefficient for a layer of thickness L 
reads 

ldI2 = l/cosh2{i,’~4~(L/a)’~2(kOa) exp[-(koa)’/2]). (8) 
We have clearly obtained the expected result: if either koa+O or kOa+co the 
transmission approaches unity. Strong reflection of waves due to stochastic inhomo- 
geneities of the medium takes place only if koa - 1 i.e. if the wavelength is comparable 
to the correlation length. 

It is obvious that for L >> s (see (7)) the waves can penetrate the medium only by 
diffusion. To clarify this point let us imagine a monochromatic source placed some- 
where in an infinite slab whose refractive index obeys the above statistics. At the 
distance L1/’ := 0.7768 s the transmission probability will be i, equal to the reflection 
probability. Hence a random walk (of photons) takes place with step length L1/’. The 
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distance x penetrated by the photons after N steps will obey the equation ( x 2 )  = NL1/2. 
Now, the duration of asingle step is ~ t ~ L ~ , ~ / c ,  so that N equals ~ t / n ~ L ~ / ~ ,  where t is  time 
and c/no is the mean velocity of light. The diffusion constant D := ( x 2 ) / t  is therefore 

(9) 
The diffusivity assumes the smallest value when the wavelength of the photons is 
comparable with the correlation length, and is proportional to a le2 :  as the fluctuations 
of the medium increase, the diffusivity of the waves decreases. Although this analysis of 
diffusion is certainly oversimplified, one may nevertheless expect it to give a correct 
qualitative picture. 

1/2 2 D = cL1/2/n0 = ( 0 . 7 8 a c / n 0 ) / { ~  E (koa)’ e ~ p [ - ( k ~ a ) ~ ] > .  
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